‘壹’ 哈希实验室浊度仪2100N的特点
不知楼主说的是国产的还是美国HACH的,如果是进口的:
2100N采用了哈希公司专利-比率测量技术,保证有效消除色度 的干扰
·可编程信号平均功能,保证了测量结果的准确性
·灵敏的故障自诊断功能,可及时提醒使用者发现并排除仪器故障
·可通入空气对样品测试腔进行吹扫,防止水汽凝结引起的光散射,因此适合于冷、热水样浊度的测量
·仪器具有数据存储功能,可通过HachLinkTM 软件将实验数据直接下载至计算机,便于数据的存储与管理
‘贰’ 怎样看硬盘检测结果
1、打开DiskGenius 后,将待检测的移动硬盘、U 盘插入电脑。
‘叁’ 激光粒度仪马尔文2000测出来的数据怎么看哪个最有用
D50最有用。它表示了该颗粒群的粒度大小。
‘肆’ 全站仪 测量过的点如何查看
返回到首页,从文件里查看,先找到你新建的文件夹,在里面找到你测的数据,就可以看到了
‘伍’ codeforces上怎么看测试数据
进入比赛,点MY SUBMISSIONS,然后再点#号下面的运行编号,就可以看到测试数据了
‘陆’ 哈希2100n如何使用
发邮箱我给发说明书
‘柒’ 如何判别测量数据中是否有异常值
异常值outlier:指样本中的个别值,其数值明显偏离它(或他们)所属样本的其余观测值,也称异常数据,离群值。
目前人们对异常值的判别与剔除主要采用物理判别法和统计判别法两种方法。
所谓物理判别法就是根据人们对客观事物已有的认识,判别由于外界干扰、人为误差等原因造成实测数据值偏离正常结果,在实验过程中随时判断,随时剔除。
统计判别法是给定一个置信概率,并确定一个置信限,凡超过此限的误差,就认为它不属于随机误差范围,将其视为异常值剔除。当物理识别不易判断时,一般采用统计识别法。
对于多次重复测定的数据值,异常值常用的统计识别与剔除法有:
拉依达准则法(3δ):简单,无需查表。测量次数较多或要求不高时用。是最常用的异常值判定与剔除准则。但当测量次数《=10次时,该准则失效。
如果实验数据值的总体x是服从正态分布的,则
式中,μ与σ分别表示正态总体的数学期望和标准差。此时,在实验数据值中出现大于μ+3σ或小于μ—3σ数据值的概率是很小的。因此,根据上式对于大于μ+3σ或小于μ—3σ的实验数据值作为异常值,予以剔除。具体计算方法参见http://202.121.199.249/foundrymate/lessons/data-analysis/13/131.htm
在这种情况下,异常值是指一组测定值中与平均值的偏差超过两倍标准差的测定值。与平均值的偏差超过三倍标准差的测定值,称为高度异常的异常值。在处理数据时,应剔除高度异常的异常值。异常值是否剔除,视具体情况而定。在统计检验时,指定为检出异常值的显着性水平α=0.05,称为检出水平;指定为检出高度异常的异常值的显着性水平α=0.01,称为舍弃水平,又称剔除水平(reject level)。
标准化数值(Z-score)可用来帮助识别异常值。Z分数标准化后的数据服从正态分布。因此,应用Z分数可识别异常值。我们建议将Z分数低于-3或高于3的数据看成是异常值。这些数据的准确性要复查,以决定它是否属于该数据集。
肖维勒准则法(Chauvenet):经典方法,改善了拉依达准则,过去应用较多,但它没有固定的概率意义,特别是当测量数据值n无穷大时失效。
狄克逊准则法(Dixon):对数据值中只存在一个异常值时,效果良好。担当异常值不止一个且出现在同侧时,检验效果不好。尤其同侧的异常值较接近时效果更差,易遭受到屏蔽效应。
罗马诺夫斯基(t检验)准则法:计算较为复杂。
格拉布斯准则法(Grubbs):和狄克逊法均给出了严格的结果,但存在狄克逊法同样的缺陷。朱宏等人采用数据值的中位数取代平均值,改进得到了更为稳健的处理方法。有效消除了同侧异常值的屏蔽效应。国际上常推荐采用格拉布斯准则法。
‘捌’ 体温测量统计,如何查看数据明细
您好,可以在【手机钉钉】-【工作台】-【员工健康】-【统计】-【体温测量统计】,点击对应的数字或者点击【查看明细】就能查看到对应的数据。包括“发热”“正常”“未测量”。温馨提示:当天体温数据支持按天导出,可以选择对应的日期进行导出。只能一天一天导出
‘玖’ 如何判别测量数据中是否有异常值
1、概述:一组测量数据中,如果个别数据偏离平均值很远,那么这个(这些)数据称作“可疑值”。如果用统计方法—例如格拉布斯(Grubbs)法判断,能将“可疑值”从此组测量数据中剔除而不参与平均值的计算,那么该“可疑值”就称作“异常值(粗大误差)”。本文就是介绍如何用格拉布斯法判断“可疑值”是否为“异常值”。
2、测量数据:例如测量10次(n=10),获得以下数据:8.2、5.4、14.0、7.3、4.7、9.0、6.5、10.1、7.7、6.0。
3、排列数据:将上述测量数据按从小到大的顺序排列,得到4.7、5.4、6.0、6.5、7.3、7.7、8.2、9.0、10.1、14.0。可以肯定,可疑值不是最小值就是最大值。
4、计算平均值x-和标准差s:x-=7.89;标准差s=2.704。计算时,必须将所有10个数据全部包含在内。
5、计算偏离值:平均值与最小值之差为7.89-4.7=3.19;最大值与平均值之差为14.0-7.89=6.11。
6、确定一个可疑值:比较起来,最大值与平均值之差6.11大于平均值与最小值之差3.19,因此认为最大值14.0是可疑值。
7、计算Gi值:Gi=(xi-x- )/s;其中i是可疑值的排列序号——10号;因此G10=( x10-x- )/s=(14.0-7.89)/2.704=2.260。由于 x10-x-是残差,而s是标准差,因而可认为G10是残差与标准差的比值。
8、下面要把计算值Gi与格拉布斯表给出的临界值GP(n)比较,如果计算的Gi值大于表中的临界值GP(n),则能判断该测量数据是异常值,可以剔除。但是要提醒,临界值GP(n)与两个参数有关:检出水平α (与置信概率P有关)和测量次数n (与自由度f有关)。
9、定检出水平α:如果要求严格,检出水平α可以定得小一些,例如定α=0.01,那么置信概率P=1-α=0.99;如果要求不严格,α可以定得大一些,例如定α=0.10,即P=0.90;通常定α=0.05,P=0.95。
10、查格拉布斯表获得临界值:根据选定的P值(此处为0.95)和测量次数n(此处为10),查格拉布斯表,横竖相交得临界值G95(10)=2.176。
11、比较计算值Gi和临界值G95(10):Gi=2.260,G95(10)=2.176,Gi>G95(10)。
12、判断是否为异常值:因为Gi>G95(10),可以判断测量值14.0为异常值,将它从10个测量数据中剔除。
13、余下数据考虑:剩余的9个数据再按以上步骤计算,如果计算的Gi>G95(9),仍然是异常值,剔除;如果Gi<G95(9),不是异常值,则不剔除。本例余下的9个数据中没有异常值。