当前位置:首页 » 网络资讯 » 怎样学大数据
扩展阅读
什么游戏可以玩生化 2024-11-17 06:20:00
炒饭可以加什么 2024-11-17 06:19:14

怎样学大数据

发布时间: 2022-02-01 22:02:51

Ⅰ 大数据初学者应该怎么学

大数据大家一定都不陌生,现在这个词几乎是红遍了大江南北,不管是男女老幼几乎都听说过大数据。大数据作为一个火爆的行业,很多人都想从事这方面相关的工作,所以大家就开始加入了学习大数据的行列。

目前,市面上不仅是学习大数据的人数在增加,随之而来的是大数据培训机构数量的迅速上升。因为很多人认为这是一门难学的技术,只有经过培训才能够很好的学习到相关技术,最终完成就业的目的。其实,也并不都是这样的,学习大数据的方法有很多,只有找到适合自己的就能够达到目的。

那么,大数据初学者应该怎么学?

1、如果是零基础的初学者,对于大数据不是很了解,也没有任何基础的话,学习能力弱,自律性差的建议选择大数据培训学习更有效;

2、有一定的基础的学员,虽然对于大数据不是很了解,但有其它方面的编程开发经验,可以尝试去选择自学的方式去学习,如果后期感觉需要大数据培训的话再去报名学习;

3、就是要去了解大数据行业的相关工作都需要掌握哪些内容,然后根据了解的内容去选择需要学习的大数据课程。

大数据学习路线图:

Ⅱ 零基础应该如何学习大数据

首先,学习大数据我们就要认识大数据,大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。

其次,学习有关大数据课程的内容,第一阶段:Java语言基础(只只需要学习Java的标准版JavaSE就可以了,做大数据不需要很深的Java 技术,当然Java怎么连接数据库还是要知道);

第二阶段:Linux精讲(因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑);

第三阶段:Hadoop生态系统(这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。)

第四阶段:strom实时开发(torm是一个免费并开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流,像Hadoop批量处理大数据一样,Storm可以实时处理数据。Storm简单,可以使用任何编程语言。)

第五阶段:Spark生态体系(它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。);

第六阶段:大数据项目实战(大数据实战项目可以帮助大家对大数据所学知识更加深刻的了解、认识,提高大数据实践技术)。

关于零基础应该如何学习大数据,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅲ 零基础如何学习大数据技术

大数据的应用场景非常多,不同的应用场景对于大数据技术的要求也有所不同,初学者可以基于自己的知识结构和所处的行业环境,来选择一个适合自己的应用场景。大数据的行业应用无非有三大场景,其一是数据采集场景,其二是数据分析场景,其三是数据应用场景,可以结合具体的场景来制定学习规划。

数据采集的应用场景非常多,很多行业领域在开展业务的过程中,都需要先完成数据采集任务,而数据采集领域的人才需求量也相对比较大,整个数据采集涉及到的环节也比较多,包括数据采集、整理和存储三大部分。相对于数据分析和应用环节来说,数据采集的入门还是相对比较容易的,初学者可以从爬虫开始学起,然后再逐渐展开和深入。

数据分析是大数据技术的核心之一,数据分析也是当前实现数据价值化的主要方式之一,所以学习大数据技术通常都一定要重视数据分析技术。数据分析当前有两大方式,其一是统计学方式,其二是机器学习方式,这两种方式的学习都需要一个过程,可以从基本的统计学知识开始学起,要重视数据分析工具的学习。

数据应用是大数据价值的出口,当前的数据应用目标有两大类,其一是给决策者使用,其二是给智能体使用,当前随着大数据逐渐成为互联网价值的一个重要载体,数据应用目标还将增加一个价值载体的分类。

最后,对于大数据初学者来说,不论选择哪个学习场景,最好要能够得到专业人士的指导,这对于提升学习效率有非常直接的影响。

关于数据分析必备的方法有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅳ 大数据怎么学,自学可以学会吗

零基础学习大数据可以有以下几个步骤:

1、选择一个具体方向

大数据已经初步形成了一个产业链,在数据采集、数据存储、数据安全、数据分析、数据呈现、数据应用等有大量的岗位,不同的岗位需要具备不同的知识结构,所以首先要选择一个适合自己的方向。

2、学习编程等基础知识

大数据的基础知识是数学、统计学和计算机,可以从编程语言开始学起,Python、Java、Scala、R、Go等语言在大数据领域都有一定的应用场景,可以选择一门学习。大数据开发方向建议选择Java、Scala,数据分析方向建议学习Python、R。

3、学习大数据平台知识

入门学习Hadoop或者Spark,Hadoop平台经过多年的发展已经形成了较为完成的应用生态,相关的成熟案例也比较多,产品插件也越来越丰富。

Ⅳ 大数据怎么学

一、数据分析师有哪些要求?

1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。

2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。

3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的问题,只有理解了商业问题,才能转换成数据分析的问题,从而满足部门的要求。

4、汇报和图表展现能力。这是临门一脚,做得再好的分析模型,如果不能很好地展示给领导和客户,成效就大打折扣,也会影响到数据分析师的职业晋升。

二、请把数据分析作为一种能力来培养

从广义来说,现在大多数的工作都需要用到分析能力,特别是数据化运营理念深入的今天,像BAT这样的公司强调全员参与数据化运营,所以,把它作为一种能力培训,将会让你终生受益。

三、从数据分析的四个步骤来看清数据分析师需具备的能力和知识:

数据分析的四个步骤(这有别于数据挖掘流程:商业理解、数据理解、数据准备、模型搭建、模型评估、模型部署),是从更宏观地展示数据分析的过程:获取数据、处理数据、分析数据、呈现数据。

(一) 获取数据

获取数据的前提是对商业问题的理解,把商业问题转化成数据问题,要通过现象发现本质,确定从哪些纬度来分析问题,界定问题后,进行数据的采集。此环节,需要数据分析师具备结构化的思维和对商业问题的理解能力。

推荐书籍:《金字塔原理》、麦肯锡三部曲:《麦肯锡意识》、《麦肯锡工具》、《麦肯锡方法》

工具:思维导图、mindmanager软件

(二) 处理数据

一个数据分析项目,通常数据处理时间占70%以上,使用先进的工具有利于提升效率,所以尽量学习最新最有效的处理工具,以下介绍的是最传统的,但却很有效率的工具:

Excel:日常在做通报、报告和抽样分析中经常用到,其图表功能很强大,处理10万级别的数据很轻松。

UltraEdit:文本工具,比TXT工具好用,打开和运行速度都比较快。

ACCESS:桌面数据库,主要是用于日常的抽样分析(做全量统计分析,消耗资源和时间较多,通常分析师会随机抽取部分数据进行分析),使用SQL语言,处理100万级别的数据还是很快捷。

Orcle、SQL sever:处理千万级别的数据需要用到这两类数据库。

当然,在自己能力和时间允许的情况下,学习新流行的分布式数据库及提升自身的编程能力,对未来的职业发展也有很大帮助。

分析软件主要推荐:

SPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。

SAS:老牌经典挖掘软件,需要编程。

R:开源软件,新流行,对非结构化数据处理效率上更高,需编程。

随着文本挖掘技术进一步发展,对非结构化数据的分析需求也越来越大,需要进一步关注文本挖掘工具的使用。

(三) 分析数据

分析数据,需要用到各类的模型,包括关联规则、聚类、分类、预测模型等,其中一个最重要的思想是对比,任何的数据需要在参照系下进行对比,结论才有意义。

推荐的书籍:

1、《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,卢辉着,机械出版社。这本书是近年国内写得最好的,务必把它当作圣经一样来读。

2、《谁说菜鸟不会数据分析(入门篇)》和《谁说菜鸟不会数据分析(工具篇)》,张文霖等编着。属于入门级的书,适合初学者。

3、《统计学》第五版,贾俊平等编着,中国人民大学出版社。比较好的一本统计学的书。

4、《数据挖掘导论》完整版,[美]Pang-Ning Tan等着,范明等翻译,人民邮电出版社。

5、《数据挖掘概念与技术》,Jiawei Han等着,范明等翻译,机械工业出版社。这本书相对难一些。

6、《市场研究定量分析方法与应用》,简明等编着,中国人民大学出版社。

7、《问卷统计分析实务—SPSS操作与应用》,吴明隆着,重庆大学出版社。在市场调查领域比较出名的一本书,对问卷调查数据分析讲解比较详细。

(四) 呈现数据

该部分需要把数据结果进行有效的呈现和演讲汇报,需要用到金字塔原理、图表及PPT、word的呈现,培养良好的演讲能力。

Ⅵ 如何开始学习大数据

那么大数据从0开始需要学习些什么内容呢?可以先从这里开始:

1、0基础学习大数据需要Java基础

可以说是大数据最基础的编程语言,一是大数据的本质是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景;二是Java天然的优势,大数据的组件很多是用Java开发的。

零基础小白想学习大数据,需要从Java基础开始学起,可以把Java语言作为第一个入门语言。一般来说,学会JavaSE就可以了,但能掌握JavaEE的话会更好。

2、学习Linux系统管理、Shell编程设计、Maven

大数据技术往往运行在Linux环境下,大数据的分布式集群(Hadoop,Spark)都是搭建在多台Linux系统上,对集群的执行命令都是在Linux终端窗口输入......想从事大数据相关工作,需要掌握Linux系统操作方法和相关命令。

Ⅶ 怎么学习大数据工程

第1阶段:掌握Java Web数据可视化


你需要掌握Java服务器端技术,前端可视化技术,数据库技术,这个阶段主要是储备大数据的前置技能,当然你已经可以从事数据可视化工程师的工作了,但还不能算真正入门大数据。


第2阶段:学会 Hadoop 核心及生态圈技术栈


这部分涵盖的技术比较多,像 HDFS 分布式存储、MapRece、Zookeeper、Kafka等你都得掌握,掌握后可以去从事 ETL 工程师等一些大数据的岗位,但是知识储备还不够完整。


第3阶段:搞定计算引擎及分析算法


计算引擎我建议是 Spark 和 Flink 都能熟练使用,虽然现在一些企业还在用 Spark,但未来 Flink 一定会成为主流。学到这,你已经具备相对完整的大数据技能,能从事一些高薪的岗位了,像大数据研发工程师、推荐系统工程师、用户画像工程师等。

Ⅷ 大数据应该怎么学才能学好

可以先关注一些大数据领域的动态,找一些相关的学习资料,以及大数据入门的书籍,了解什么是大数据,有哪些岗位就业方向、基本的技术知识等。
大数据有各方面的工作,有需要用到高深的技术的,也有简单的工作,主要你愿意并且有决心从事大数据相关工作,不管你先前读什么专业,一定能找到适合你的切入点,进入大数据行业工作。
大数据应用到不同的行业侧重点会有不同,不同的岗位对技能要求的侧重也不同。零基础想要进入大数据行业,首先要搞清楚大数据产业链的情况,接下来要明确大数据技术栈也就是相关技术体系,选定一个自己想要从事的方向,了解所选岗位方向侧重的技能有哪些,定下学习目标和应用方向。

Ⅸ 初学者如何高效学习大数据技术

大数据相比大家一定都不陌生,很多小伙伴一定也想学习大数据技术,从事这方面的工作。因为近些年大数据是非常火爆的一个行业,之未来的发展前景也被大家所看好,所以也吸引了很多人前来学习大数据技术。
那么,大数据怎么学习比较好呢?
首先,小编认为大家需要做的就是去选择一个比较适合自己的学习方式,目前市面上主要是自学和培训俩种方式。
自学,相对来说是比较适合有一定的编程基础的小伙伴的,并且自律性也要比较强才行,否则是很那坚持学习下去的,很多人都是因为没有自律性导致后期逐渐的放弃学习。
培训,不管是有基础还是零基础的都比较适合,只要想学习都是可以的,但前提是你必须要满足年龄和学历的一个要求才行。
其次,就是在学习的过中应该如何对待,小编这里一共总结了下边几个方面的,希望可以帮助大家。
1、遇到问题一定要及时解决,在解决的过程中先自己试着去解决,如果解决不了就去多问问老师,看看是怎么解决的;
2、多和同学之间进行交流,在学习中有什么疑问和同学多进行交流,这样不仅可以互相帮忙学习,还可以不断体系学习效率;
3、多敲代码,多练习。编程学习主要是动手能力,所以大家一定要多去练习,只有练习之后你才能更好的发现问题并解决。