Ⅰ 怎样从数据挖掘中数据
什么叫"中数据"?
没看懂...
是说"从数据中挖掘数据"吗?
Ⅱ 如何教好数据的挖掘课程
我们一直在探索大数据的意义。创造价值,来自数据的价值,使得大数据越来越被接受和认可,并且越来越多的企业开始更加重视大数据。
大数据时代,数据的价值是不受限制和无法估量的。对企业来说,大数据可以应用到精准运营,有效管理和全面监控。在大数据时代,数据是一个不会枯竭的资产,有效的利用数据资产进行决策,将是大数据价值的起点。既然大数据的目的是为了创造价值,那么今天我们就来讨论一下如何创造价值。
1.大数据的前奏——工具
在深入这个问题之前,我们需要探讨的是大数据的落点——如何去使用这些数据看我们需要一个平台,一个工具,去实现数据可视化。商务智能(BI)就是这样的一个工具,大数据平台搭建的关键点。
商务智能的概念大家都非常熟悉了。有人把商务智能比作为烹饪,需要准备食材、除污、加工、制作之后才能完成;还有人把商务智能比作为就诊,要做到观察、发现疾病,分析、对症下药、观察、治愈和预防。但是,真正的商务智能工具需要具备交互、洞察和简单易用的特点。这就催生了敏捷型的商务智能平台,他们具有高效、便捷和深度洞察的能力。
2.大数据治理
有了数据资源、有了平台工具,怎么把平台和工具用起来看有人提问:是不是只有数据分析师才能使用这个工具看想成为数据分析师是不是很困难看开始着手数据分析并不难,只要掌握了基本的数据治理方法,我们就可以进入数据分析的行列了。结合实际工作,总结出了一套数据分析方法论,让我们在处理数据的时候有据可循。
想做数据分析,我们首先先要了解数据。了解数据,那要分析了,怎么分析看数据分析的步骤怎么做看知道该怎么分析了,数据重复、缺失、错误、不可用和不一致的时候又该怎么办看数据干净了,知道怎么进行分析,知道怎么处理数据看这些问题,我们的数据分析方法论里面会一一解答。
数据分析第一步:了解数据
了解数据,是展开数据分析工作的必要条件。方法论中,会简单的把数据分成两种:维度和度量。所谓分析,就是维度和度量的组合,以及对比和细分。有一点需要格外注意,维度和度量是可以转换的。比如要看逗年龄地的平均数,这里的逗年龄地就是度量,要看19岁用户的订单情况,这里的逗年龄地就是维度。对于一个数据项而言,到底它是维度还是度量,是根据用户的需求而定的。像极了量子效应:状态只有需求确定后才会随之确定。
但是维度和度量又是善变的,维度和度量可以组合加工衍生出新的维度或者度量。这个就是对数据的一个基础分类:维度和度量。
数据分析第二步:了解分析
怎么分析看做判断用对比,找原因用细分。下面我们开始做分析了。怎么分析看简单的来说,就是:做判断用对比,找原因用细分。
数据分析第三步:数据分析的步骤
那么,数据分析的步骤是这样的:确定目标->分解指标->数据模型->制作报告->其他功能。
第一步:确定目标。我们是增加销量,提高用户活跃度,还是提高工作效率,减少成本?我们要达到什么效果看
第二步:分解指标。找找哪些指标才能达到上述的目的看客流量、进店率、下单率、复购率看这些够吗看不够咱们继续加。指标以解决问题为准。
第三步:数据建模。找到完成上述指标所需要的数据,细化字段,如用户名、销量、利润等。这个时候就要用到我们上面讲过的怎么分析了,对比,细分,再对比,再细分,直到满意为止。
第四部,制作报告。根据数据模型,完成数据分析报告。丑媳妇要见公婆了,怎么也得打扮一下嘛。这个时候用什么方式展现呢看柱图看排名,线图看趋势,饼图、环形图看局部占整体比例。还有气泡、词云看集中度,散点看多个实体的分布,组织图看流向,雷达图看多指标综合性。
数据分析第四步:数据治理
了解了数据和怎么分析,现在终于可以开始分析了,突然发现数据出现一堆问题,例如不能用,数据重复、缺失、错误、不可用和不一致。怎么办看就得靠下面的数据治理方法论来整治一下了。
数据分析时,数据治理是必不可少的环节。只有正确的数据,才能指导我们做出正确的决策。
数据分析第五步:指标分析
搭建数据分析指标模型,一步一步细化分析需求。跟着目标,需要哪些指标来监控或分析能达成目标呢看比如利润,相关指标就是收入和成本。当然,这样的指标太粗线条了,包括收入有哪几类,成本有哪几类,都应该考虑进去。
比如,零售行业的销售额可以分解为客流量、进店率、购买率、客单价和复购率等。所以,分解的方式有很多种,需要遵循MECE原则(完全穷举,相互独立)。又比如零售行业的经营、库存计划进度都可以作为一个分析切入点。每个切入点又都有各个阶段的目的,然后依照目的逐级细化指标。
数据分析第六步:报表美化
做好了指标体系模型,终于可以做报告了。不同的图、表、筛选条件共同定义了我们的数据洞察。他们的组合体现了我们的认知。咱们来看几张报告的样子。图、表、筛选、预警;占比、趋势、对比等还有很多。
报告的样式是我们智慧的展示,做的美一些,肯定会更好。做了不好看,会被说审美有问题的。如何做一个美的冒泡的报告看这里有几个简单的原则。对齐、等距、统一风格主题、增加报告标题、铺满整个屏幕。
Ⅲ 6级任务 挖掘数据 怎么做
解决方案1:M,且与类域边界的沿垂直于该超平面方向的距离最大,其归于cj类的类条件概率是P(X/;T2,具有相对优良的性能指标(1)决策树决策树归纳是经典的分类算法,…。另外,M,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的,由此构造出的分类器可以最大化类与类的间隔,Bayes分类方法在理论上论证得比较充分,因此该方法往往在效果上难以达到理论上的最大值,记为C={c1;ci)P(ci)=Maxj[P(x/,这样的条件在实际文本中一般很难满足,而那些样本容量较小的类域采用这种算法比较容易产生误分:若P(x/,因为对每一个待分类的文本都要计算它到全体已知样本的距离。因此:D=D(T1,因此对于类域的交叉或重叠较多的待分样本集来说,由Salton等人于60年代末提出,待分样本的分类结果取决于各类域中样本的全体;…,VSM法相对其他分类方法而言;P(x)(1)若P(ci/,…,其包含的每个特征项对于类别的表达能力越弱,Bayes法要求表达文本的主题词相互独立,采用这种方法可以较好地避免样本的不平衡问题:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别。为了获得它们,只与极少量的相邻样本有关,则有x∈ci(2)式(2)是最大后验概率判决准则,ci,…,只需要计算待分样本和每一个类别向量的相似度即内积。该方法的思路非常简单直观。当需要对一篇待分样本进行分类的时候,2,是一个理论上比较成熟的方法。设训练样本集分为M类;x)=P(x/。KNN方法虽然从原理上也依赖于极限定理,故SVM法亦被称为最大边缘(maximummargin)算法,移去或者减少这些样本对分类结果没有影响,事先去除对分类作用不大的样本,则该样本也属于这个类别。当文本被表示为空间向量模型的时候,则x∈ci这就是常用到的Bayes分类判决准则,Wn)。另外,就要求样本足够大。可以从生成的决策树中提取规则。Bayes方法的薄弱环节在于实际情况下,但在类别决策时;X)=MaxjP(cj/,2,可得到cj类的后验概率P(ci/,i=1,而不是靠判别类域的方法来确定所属类别的,由于KNN方法主要靠周围有限的邻近的样本。当样本集非常大时,由Vapnik等人于1995年提出;ci),i=1,能降低KNN算法的计算复杂度。因此,i=1,…,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,则有,…,提高分类的效率,在应用上也是非常广泛的;总样本数,KNN方法较其他方法更为适合。待分样本集中的大部分样本不是支持向量。目前常用的解决方法是事先对已知样本点进行剪辑。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。根据研究发现。经过长期的研究。该算法比较适用于样本容量比较大的类域的自动分类。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。通过学习算法。它采用自顶向下递归的各个击破方式构造决策树,而该空间向量的建立又很大程度的依赖于该类别向量中所包含的特征项,文本的相似度就可以借助特征向量之间的内积来表示。(4)VSM法VSM法即向量空间模型(VectorSpaceModel)法。这是最早也是最出名的信息检索方面的数学模型。由于VSM法中需要事先计算类别的空间向量,SVM法对小样本情况下的自动分类有着较好的分类结果。(3)SVM法SVM法即支持向量机(SupportVectorMachine)法。在实际应用中,j=1,M,j=1。另外还有一种ReverseKNN法;Tn;ci)·P(ci)/,因而有较好的适应能力和较高的分准率,W1:P(ci/,M,然后选取相似度最大的类别作为该待分样本所对应的类别,VSM法一般事先依据语料库中的训练样本和分类体系建立类别向量空间,则根据Bayes定理。该方法的不足之处是计算量较大,类别中所包含的非零特征项越多,最初由Cover和Hart于1968年提出的。树的每一个结点上使用信息增益度量选择测试属性;X)。支持向量机算法的目的在于寻找一个超平面H(d),…cM},2,将式(1)代入式(2)。对于一个待分样本X,然后通过计算文本相似度的方法来确定待分样本的类别,2,2,该超平面可以将训练集中的数据分开。该方法是建立在统计学习理论基础上的机器学习方法,每类的先验概率为P(ci),W2,…。(5)Bayes法Bayes法是一种在已知先验概率与类条件概率的情况下的模式分类方法;cj)P(cj)],更适合于专业文献的分类,才能求得它的K个最近邻点。(2)KNN法(K-NearestNeighbor)KNN法即K最近邻法,M;X),可以认为P(ci)=ci类样本数/。其基本思想是将文档表示为加权的特征向量
Ⅳ 大数据时代的数据怎么挖掘
3月13日下午,南京邮电大学计算机学院、软件学院院长、教授李涛在CIO时代APP微讲座栏目作了题为《大数据时代的数据挖掘》的主题分享,深度诠释了大数据及大数据时代下的数据挖掘。
众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。
一、数据挖掘
在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知识发现Knowledge Discovery from Data,泛指从大量数据中挖掘出隐含的、先前未知但潜在的有用信息和模式的一个工程化和系统化的过程。
不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面:
1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以,数据挖掘来自于应用实践,同时也服务于应用实践,数据是根本,数据挖掘应以数据为导向,其中涉及到算法的设计与开发都需考虑到实际应用的需求,对问题进行抽象和泛化,将好的算法应用于实际中,并在实际中得到检验。
2.工程性(An Engineering Process):数据挖掘是一个由多个步骤组成的工程化过程。数据挖掘的应用特性决定了数据挖掘不仅仅是算法分析和应用,而是一个包含数据准备和管理、数据预处理和转换、挖掘算法开发和应用、结果展示和验证以及知识积累和使用的完整过程。而且在实际应用中,典型的数据挖掘过程还是一个交互和循环的过程。
3.集合性(A Collection of Functionalities):数据挖掘是多种功能的集合。常用的数据挖掘功能包括数据探索分析、关联规则挖掘、时间序列模式挖掘、分类预测、聚类分析、异常检测、数据可视化和链接分析等。一个具体的应用案例往往涉及多个不同的功能。不同的功能通常有不同的理论和技术基础,而且每一个功能都有不同的算法支撑。
4.交叉性(An Interdisciplinary Field):数据挖掘是一门交叉学科,它利用了来自统计分析、模式识别、机器学习、人工智能、信息检索、数据库等诸多不同领域的研究成果和学术思想。同时一些其他领域如随机算法、信息论、可视化、分布式计算和最优化也对数据挖掘的发展起到重要的作用。数据挖掘与这些相关领域的区别可以由前面提到的数据挖掘的3个特性来总结,最重要的是它更侧重于应用。
综上所述,应用性是数据挖掘的一个重要特性,是其区别于其他学科的关键,同时,其应用特性与其他特性相辅相成,这些特性在一定程度上决定了数据挖掘的研究与发展,同时,也为如何学习和掌握数据挖掘提出了指导性意见。如从研究发展来看,实际应用的需求是数据挖掘领域很多方法提出和发展的根源。从最开始的顾客交易数据分析(market basket analysis)、多媒体数据挖掘(multimedia data mining)、隐私保护数据挖掘(privacy-preserving data mining)到文本数据挖掘(text mining)和Web挖掘(Web mining),再到社交媒体挖掘(social media mining)都是由应用推动的。工程性和集合性决定了数据挖掘研究内容和方向的广泛性。其中,工程性使得整个研究过程里的不同步骤都属于数据挖掘的研究范畴。而集合性使得数据挖掘有多种不同的功能,而如何将多种功能联系和结合起来,从一定程度上影响了数据挖掘研究方法的发展。比如,20世纪90年代中期,数据挖掘的研究主要集中在关联规则和时间序列模式的挖掘。到20世纪90年代末,研究人员开始研究基于关联规则和时间序列模式的分类算法(如classification based on association),将两种不同的数据挖掘功能有机地结合起来。21世纪初,一个研究的热点是半监督学习(semi-supervised learning)和半监督聚类(semi-supervised clustering),也是将分类和聚类这两种功能有机结合起来。近年来的一些其他研究方向如子空间聚类(subspace clustering)(特征抽取和聚类的结合)和图分类(graph classification)(图挖掘和分类的结合)也是将多种功能联系和结合在一起。最后,交叉性导致了研究思路和方法设计的多样化。
前面提到的是数据挖掘的特性对研究发展及研究方法的影响,另外,数据挖掘的这些特性对如何学习和掌握数据挖掘提出了指导性的意见,对培养研究生、本科生均有一些指导意见,如应用性在指导数据挖掘时,应熟悉应用的业务和需求,需求才是数据挖掘的目的,业务和算法、技术的紧密结合非常重要,了解业务、把握需求才能有针对性地对数据进行分析,挖掘其价值。因此,在实际应用中需要的是一种既懂业务,又懂数据挖掘算法的人才。工程性决定了要掌握数据挖掘需有一定的工程能力,一个好的数据额挖掘人员首先是一名工程师,有很强大的处理大规模数据和开发原型系统的能力,这相当于在培养数据挖掘工程师时,对数据的处理能力和编程能力很重要。集合性使得在具体应用数据挖掘时,要做好底层不同功能和多种算法积累。交叉性决定了在学习数据挖掘时要主动了解和学习相关领域的思想和技术。
因此,这些特性均是数据挖掘的特点,通过这四个特性可总结和学习数据挖掘。
二、大数据的特征
大数据(bigdata)一词经常被用以描述和指代信息爆炸时代产生的海量信息。研究大数据的意义在于发现和理解信息内容及信息与信息之间的联系。研究大数据首先要理清和了解大数据的特点及基本概念,进而理解和认识大数据。
研究大数据首先要理解大数据的特征和基本概念。业界普遍认为,大数据具有标准的“4V”特征:
1.Volume(大量):数据体量巨大,从TB级别跃升到PB级别。
2.Variety(多样):数据类型繁多,如网络日志、视频、图片、地理位置信息等。
3.Velocity(高速):处理速度快,实时分析,这也是和传统的数据挖掘技术有着本质的不同。
4.Value(价值):价值密度低,蕴含有效价值高,合理利用低密度价值的数据并对其进行正确、准确的分析,将会带来巨大的商业和社会价值。
上述“4V”特点描述了大数据与以往部分抽样的“小数据”的主要区别。然而,实践是大数据的最终价值体现的唯一途径。从实际应用和大数据处理的复杂性看,大数据还具有如下新的“4V”特点:
5.Variability(变化):在不同的场景、不同的研究目标下数据的结构和意义可能会发生变化,因此,在实际研究中要考虑具体的上下文场景(Context)。
6.Veracity(真实性):获取真实、可靠的数据是保证分析结果准确、有效的前提。只有真实而准确的数据才能获取真正有意义的结果。
7.Volatility(波动性)/Variance(差异):由于数据本身含有噪音及分析流程的不规范性,导致采用不同的算法或不同分析过程与手段会得到不稳定的分析结果。
8.Visualization(可视化):在大数据环境下,通过数据可视化可以更加直观地阐释数据的意义,帮助理解数据,解释结果。
综上所述,以上“8V”特征在大数据分析与数据挖掘中具有很强的指导意义。
三、大数据时代下的数据挖掘
在大数据时代,数据挖掘需考虑以下四个问题:
大数据挖掘的核心和本质是应用、算法、数据和平台4个要素的有机结合。
因为数据挖掘是应用驱动的,来源于实践,海量数据产生于应用之中。需用具体的应用数据作为驱动,以算法、工具和平台作为支撑,最终将发现的知识和信息应用到实践中去,从而提供量化的、合理的、可行的、且能产生巨大价值的信息。
挖掘大数据中隐含的有用信息需设计和开发相应的数据挖掘和学习算法。算法的设计和开发需以具体的应用数据作为驱动,同时在实际问题中得到应用和验证,而算法的实现和应用需要高效的处理平台,这个处理平台可以解决波动性问题。高效的处理平台需要有效分析海量数据,及时对多元数据进行集成,同时有力支持数据化对算法及数据可视化的执行,并对数据分析的流程进行规范。
总之,应用、算法、数据、平台这四个方面相结合的思想,是对大数据时代的数据挖掘理解与认识的综合提炼,体现了大数据时代数据挖掘的本质与核心。这四个方面也是对相应研究方面的集成和架构,这四个架构具体从以下四个层面展开:
应用层(Application):关心的是数据的收集与算法验证,关键问题是理解与应用相关的语义和领域知识。
数据层(Data):数据的管理、存储、访问与安全,关心的是如何进行高效的数据使用。
算法层(Algorithm):主要是数据挖掘、机器学习、近似算法等算法的设计与实现。
平台层(Infrastructure):数据的访问和计算,计算平台处理分布式大规模的数据。
综上所述,数据挖掘的算法分为多个层次,在不同的层面有不同的研究内容,可以看到目前在做数据挖掘时的主要研究方向,如利用数据融合技术预处理稀疏、异构、不确定、不完整以及多来源数据;挖掘复杂动态变化的数据;测试通过局部学习和模型融合所得到的全局知识,并反馈相关信息给预处理阶段;对数据并行分布化,达到有效使用的目的。
四、大数据挖掘系统的开发
1.背景目标
大数据时代的来临使得数据的规模和复杂性都出现爆炸式的增长,促使不同应用领域的数据分析人员利用数据挖掘技术对数据进行分析。在应用领域中,如医疗保健、高端制造、金融等,一个典型的数据挖掘任务往往需要复杂的子任务配置,整合多种不同类型的挖掘算法以及在分布式计算环境中高效运行。因此,在大数据时代进行数据挖掘应用的一个当务之急是要开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
之前提到一个数据挖掘有多种任务、多种功能及不同的挖掘算法,同时,需要一个高效的平台。因此,大数据时代的数据挖掘和应用的当务之急,便是开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
2.相关产品
现有的数据挖掘工具
有Weka、SPSS和SQLServer,它们提供了友好的界面,方便用户进行分析,然而这些工具并不适合进行大规模的数据分析,同时,在使用这些工具时用户很难添加新的算法程序。
流行的数据挖掘算法库
如Mahout、MLC++和MILK,这些算法库提供了大量的数据挖掘算法。但这些算法库需要有高级编程技能才能进行任务配置和算法集成。
最近出现的一些集成的数据挖掘产品
如Radoop和BC-PDM,它们提供友好的用户界面来快速配置数据挖掘任务。但这些产品是基于Hadoop框架的,对非Hadoop算法程序的支持非常有限。没有明确地解决在多用户和多任务情况下的资源分配。
3.FIU-Miner
为解决现有工具和产品在大数据挖掘中的局限性,我们团队开发了一个新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一个用户友好并支持在分布式环境中进行高效率计算和快速集成的数据挖掘系统。与现有数据挖掘平台相比,FIU-Miner提供了一组新的功能,能够帮助数据分析人员方便并有效地开展各项复杂的数据挖掘任务。
与传统的数据挖掘平台相比,它提供了一些新的功能,主要有以下几个方面:
A.用户友好、人性化、快速的数据挖掘任务配置。基于“软件即服务”这一模式,FIU-Miner隐藏了与数据分析任务无关的低端细节。通过FIU-Miner提供的人性化用户界面,用户可以通过将现有算法直接组装成工作流,轻松完成一个复杂数据挖掘问题的任务配置,而不需要编写任何代码。
B.灵活的多语言程序集成。允许用户将目前最先进的数据挖掘算法直接导入系统算法库中,以此对分析工具集合进行扩充和管理。同时,由于FIU-Miner能够正确地将任务分配到有合适运行环境的计算节点上,所以对这些导入的算法没有实现语言的限制。
C.异构环境中有效的资源管理。FIU-Miner支持在异构的计算环境中(包括图形工作站、单个计算机、和服务器等)运行数据挖掘任务。FIU-Miner综合考虑各种因素(包括算法实现、服务器负载平衡和数据位置)来优化计算资源的利用率。
D.有效的程序调度和执行。
应用架构上包括用户界面层、任务和系统管理层、逻辑资源层、异构的物理资源层。这种分层架构充分考虑了海量数据的分布式存储、不同数据挖掘算法的集成、多重任务的配置及系统用户的交付功能。一个典型的数据挖掘任务在应用之中需要复杂的主任务配置,整合多种不同类型的挖掘算法。因此,开发和建立这样的计算平台和工具,支持应用领域的数据分析人员进行有效的分析是大数据挖掘中的一个重要任务。
FIU-Miner系统用在了不同方面:如高端制造业、仓库智能管理、空间数据处理等,TerraFly GeoCloud是建立在TerraFly系统之上的、支持多种在线空间数据分析的一个平台。提供了一种类SQL语句的空间数据查询与挖掘语言MapQL。它不但支持类SQL语句,更重要的是可根据用户的不同要求,进行空间数据挖掘,渲染和画图查询得到空间数据。通过构建空间数据分析的工作流来优化分析流程,提高分析效率。
制造业是指大规模地把原材料加工成成品的工业生产过程。高端制造业是指制造业中新出现的具有高技术含量、高附加值、强竞争力的产业。典型的高端制造业包括电子半导体生产、精密仪器制造、生物制药等。这些制造领域往往涉及严密的工程设计、复杂的装配生产线、大量的控制加工设备与工艺参数、精确的过程控制和材料的严格规范。产量和品质极大地依赖流程管控和优化决策。因此,制造企业不遗余力地采用各种措施优化生产流程、调优控制参数、提高产品品质和产量,从而提高企业的竞争力。
在空间数据处理方面,TerraFly GeoCloud对多种在线空间数据分析。对传统数据分析而言,其难点在于MapQL语句比较难写,任务之间的关系比较复杂,顺序执行之间空间数据分许效率较低。而FIU-Miner可有效解决以上三个难点。
总结而言,大数据的复杂特征对数据挖掘在理论和算法研究方面提出了新的要求和挑战。大数据是现象,核心是挖掘数据中蕴含的潜在信息,并使它们发挥价值。数据挖掘是理论技术和实际应用的完美结合。数据挖掘是理论和实践相结合的一个例子。
Ⅳ 数据挖掘工具怎样实现数据挖掘的
以R语言为例:
首先要导入数据,在进行数据清洗,然后使用R的包中的算法函数,实现决策树或者聚类等你想实现的算法,同时输出结果。如r实现聚类, t<-kmeans(x,2),就是将矩阵X分成两个簇同时赋值给t。
Ⅵ 什么是数据挖掘啊怎挖掘
数据挖掘(Data Mining)就是从大量的,不完全的,有噪声的,模糊的,随机的实际应用数据中,提取隐含在其中的,人们事先不知道的,但又是潜在有用的信息和知识的过程.它是通过采用自动或半自动的手段,在海量数据中发现有意义的行为和规则的探测和分析活动。
数据挖掘是从数据中自动地抽取模式、关联、变化、异常和有意义的结构
数据挖掘常用技术:
统计分析方法
决策树
神经网络
遗传算法
粗集(Rough Set)
数据挖掘的过程
1.确定业务对象
2.数据准备:1) 数据的选择2) 数据的预处理3) 数据的转换
3.数据挖掘
4.结果分析
5.知识的同化:将分析所得到的知识集成到业务信息系统的组织结构中去.
Ⅶ 如何做数据分析挖掘
首先数据积累
单看某一时间点的数据没有太大的意义
数据是拿来比较,从而分析趋势
数据需要大多只是量化指标
数据要经过分析得出信息,信息才是对我们有用的
分析数据建立模型,带入各种公式之类的专业人员做的事情
Ⅷ 去哪找数据怎么挖掘
数据堂,注册以后可以下载,很全面的。
数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的原始素材。
数据可以是连续的值,比如声音、图像,称为模拟数据;也可以是离散的,如符号、文字,称为数字数据。
在计算机系统中,数据以二进制信息单元0、1的形式表示。
数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。
它不仅指狭义上的数字,还可以是具有一定意义的文字、字母、数字符号的组合、图形、图像、视频、音频等,也是客观事物的属性、数量、位置及其相互关系的抽象表示。例如,“0、1、2…”、“阴、雨、下降、气温”、“学生的档案记录、货物的运输情况”等都是数据。数据经过加工后就成为信息。
在计算机科学中,数据是所有能输入计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。计算机存储和处理的对象十分广泛,表示这些对象的数据也随之变得越来越复杂。
Ⅸ 《财务如何挖掘数据》
1什么是数据挖掘?
1、数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的知识的过程。
2、数据挖掘的程序
3、数据分析与数据挖掘的对比
数据分析
定义:是对数据进行分析,是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用。
作用:主要实现三大作用:现状分析、原因分析、预测分析(定量)数据分析的目标明确,先做假设,然后通过数据分析来验证假设是否正确,从而得到相应的结论。
方法:主要采用对比分析、分组分析、交叉分析、回归分析等常用分 析方法。
结果:数据分析一般都是得到一个指标统计量结果,如总和、平均值,这些指标数据都需要与业务结合进行解读,才能发挥出数据的价值与作用。
定义:是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。
作用:主要侧重解决四类问题: 分类、聚类、关联和预测(定量、定性),数据挖掘的重点在寻找未知的模式与规律;如我们常说的数据挖掘。
方法:主要采用决策树、神经网络、关联规则、聚类分析等统计学、 人工智能、机器学习等方法进行挖掘。
结果:输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。
数据挖掘
【案例】
啤酒与尿布、安全套与巧克力等,这就是事先未知的,但又是非常有价值的信息。
数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策。所以数据分析(狭义)与数据挖掘构成广义的数据分析。