当前位置:首页 » 网络资讯 » 怎样对数据进行分析
扩展阅读
遇到绝症的心理怎样调整 2024-11-15 16:32:11
邵逸夫可以网上看吗 2024-11-15 16:10:01

怎样对数据进行分析

发布时间: 2022-01-13 04:44:07

① 如何正确进行数据分析

大数据分析处理解决方案

方案阐述

每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。

数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么?借此可以观察舆情的整体态势,洞若观火。

原本分散、孤立的信息通过分析、挖掘具有了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助政府在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。

所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。

大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。

用大数据引领创新管理。无论是政府的公共事务管理还是企业的管理决策都要用数据说话。政府部门在出台社会规范和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。政府和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。

解决关键

如何能够快速的找到所需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类:标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类:帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。

解决方案

多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行7*24小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑政府、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。

② 用excel怎么对数据进行分析

以office07版为例;新建并打开excel表格,如图

首先添加数据分析插件,点击左上角按钮,出现菜单页面,选中右下角“EXCEL选项”按钮,点击,如图

然后点击“加载项”选项,选中“分析工具库”,点击下方"转到"按钮,如图

然后出现excel加载宏界面,在”分析工具库“前方框内打勾,点击确定。

经过上一步已经成功添加”数据分析插件“,在”数据“-”数据分析“下可以找到,
然后点击”数据分析“,可以找到相关的分析方法,如 回归分析,方差分析,相关分析等。

③ 如何对游戏的数据进行分析

游戏后台会自动根据你在游戏中的表现如造成伤害,承受伤害,所占经济,参团比例等进行分析,从而给出你的局内表现

④ 怎样对数据进行分析,主要是物料进出方面的

数据分析一定是问题导向的,不会凭空蹦出思路来的。
所以,要想分析物料进出,就得有想要解决的问题,或者想要了解的业务诉求。
比方说,想知道一个月那几天是物料进出库的高峰期,用曲线图就可以了;
比方说,想知道物料一次入库合格情况,就可以编制一个指标,一次如何检验合格率;然后观察它在每个月每周、每天的情况;
比方说,想知道物料库龄的情况,就可以将库龄分割成好几个时间段,1-3月,4-6月……,然后统计盘点其不同库龄的分布。
总之,数据分析一定要问题导向,业务诉求导向,或者说露骨些:领导的需求导向。这样你就能很快找到分析方法了。

⑤ 如何对数据进行分析 大数据分析方法整理

【导读】随着互联网的发展,数据分析已经成了非常热门的职业,大数据分析师也成了社会打工人趋之若鹜的职业,不仅高薪还没有很多职场微世界的繁琐事情,不过要想做好数据分析工作也并不简单,今天小编就来和大家说说如何对数据进行分析?为此小编对大数据分析方法进行的归纳整理,一起来看看吧!

画像分群

画像分群是聚合契合某种特定行为的用户,进行特定的优化和剖析。

比方在考虑注册转化率的时候,需求差异移动端和Web端,以及美国用户和我国用户等不同场景。这样可以在途径战略和运营战略上,有针对性地进行优化。

趋势维度

树立趋势图表可以活络了解商场,用户或产品特征的根柢体现,便于进行活络迭代;还可以把方针依据不同维度进行切分,定位优化点,有助于挑选方案的实时性。

趋势维度

漏斗查询

经过漏斗剖析可以从先到后的次序恢复某一用户的途径,剖析每一个转化节点的转化数据。

悉数互联网产品、数据分析都离不开漏斗,不论是注册转化漏斗,仍是电商下单的漏斗,需求注重的有两点。首先是注重哪一步丢掉最多,第二是注重丢掉的人都有哪些行为。

注重注册流程的每一进程,可以有用定位高损耗节点。

漏斗查询

行为轨道

行为轨道是进行全量用户行为的恢复,只看PV、UV这类数据,无法全面了解用户怎样运用你的产品。了解用户的行为轨道,有助于运营团队注重具体的用户领会,发现具体问题,依据用户运用习气规划产品、投进内容。

行为轨道

留存剖析

留存是了解行为或行为组与回访之间的相关,留存老用户的本钱要远远低于获取新用户,所以剖析中的留存是十分重要的方针之一。

除了需求注重全体用户的留存情况之外,商场团队可以注重各个途径获取用户的留存度,或各类内容招引来的注册用户回访率,产品团队注重每一个新功用用户的回访影响等。

留存剖析

A/B查验

A/B查验是比照不同产品规划/算法对效果的影响。

产品在上线进程中常常会运用A/B查验来查验产品效果,商场可以经过A/B查验来完毕不同构思的查验。

要进行A/B查验有两个必备要素:

1)有满意的时刻进行查验

2)数据量和数据密度较高

由于当产品流量不行大的时候,做A/B查验得到核算经果是很难的。

A/B查验

优化建模

当一个商业方针与多种行为、画像等信息有相关时,咱们一般会运用数据挖掘的办法进行建模,猜测该商业效果的产生。

优化建模

例如:作为一家SaaS企业,当咱们需求猜测判别客户的付费自愿时,可以经过用户的行为数据,公司信息,用户画像等数据树立付费温度模型。用更科学的办法进行一些组合和权重,得知用户满意哪些行为之后,付费的或许性会更高。

以上就是小编今天给大家整理分享关于“如何对数据进行分析
大数据分析方法整理”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,一直学习,这样更有核心竞争力与竞争资本。

⑥ 如何进行有效的数据分析

首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;

什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。

专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。

那么,我们做数据 分析的目的是什么呢?

事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。

数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析

工作中我们运用数据分析的作用有哪些?

1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等

2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题

3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。

最重要的一点:

我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?

然后,我们来看数据分析的六部曲

1、明确分析目的和思路:

这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。

2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。

3、数据处理:

主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。

4、数据分析:

首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。

5、数据展现:

数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点

6、撰写报告:

数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。

⑦ 如何对excel表格的数据进行分析

1.首先来看一下原始数据:
A列是姓名,有重复的项目。B列是数量。要求求得A列每个人的数量合计。
2.首先,复制A列数据,粘贴到C列。
3.选中C列数据,选择【数据】-【删除重复项】。
4.选择【以当前选定区域排序】,然后点击【删除重复项】。
5....

⑧ 如何对一份数据进行分析 论文 知乎

汇调研(专业的第三方市场调研服务提供商)
先说说写一份好的数据分析报告的重要性,很简单,因为分析报告的输出是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。

一份好的分析报告,有以下一些要点:
首先,要有一个好的框架
跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;
第二,每个分析都有结论,而且结论一定要明确
如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;
第三,分析结论不要太多要精
如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;
第四,分析结论一定要基于紧密严禁的数据分析推导过程
不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;
第五,好的分析要有很强的可读性
这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站在读者的角度去写分析邮件;
第六,数据分析报告尽量图表化
这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从;
第七,好的分析报告一定要有逻辑性
通常要遵照:1、发现问题–2、总结问题原因–3、解决问题,这样一个流程,逻辑性强的分析报告也